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Abstract

We propose a theory of strategic voting in multi-winner elections with

approval balloting: A fixed number  of candidates are to be elected;

each voter votes for as many candidates as she wants; the  candidates

with the most votes are elected. We assume that voter preferences are

separable and that there exists a tiny probability that any vote might be

misrecorded.

Best responses involve voting by pairwise comparisons. Two candi-

dates play a critical role: the weakest expected winner and the strongest

expected loser. Expected winners are approved if and only if they are pre-

ferred to the strongest expected loser and expected losers are approved if

and only if they are preferred to the weakest expected winner.

At equilibrium, if any, a candidate is elected if and only if he is ap-

proved by at least half of the voters. With single-peaked preferences, an

equilibrium always exists, in which the first  candidates according to

the majority tournament relation are elected.

The theory is tested on individual data from the 2011 Regional Gov-

ernment election in Zurich.

1 Introduction

In many instances, societies choose, by voting, a group of representatives. Vot-

ing rules for these kinds of elections are more complex than rules designed to

∗Support through the ANR-Labex IAST is gratefully acknowledged. Data used

in Section 7 have been collected by the Making Electoral Democracy Work project

(http://electoraldemocracy.com). We warmly thank Romain Lachat for his collaboration on

Section 7.
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elect one and only one candidate, and are much less studied in the theoreti-

cal literature. Cases of interest include Parliamentary elections and committee

selection.

Parliamentary elections in majoritarian systems often proceed by dividing

the electorate in subgroups, usually on a geographical basis, and by electing one

or several MPs in each such district (Blais and Massicotte 2002, Pukelsheim

2014). The number of delegates is usually fixed for each district, although it

may be adjusted in view of the overall results (such is the case in Germany).

The set of candidates can be structured with party lists or can be composed of

independent/individual candidates.

Committee selection, where a fixed-sized committee has to be elected, of-

fers another example. Note that, in the case of a committee, another kind of

complexity may arise because, contrary to most Parliamentary elections, some

structure is often imposed on the set of elected candidates. For example the

chosen committee must reflect some gender or status balance.

The present paper will concentrate on the simplest case where: (i) the num-

ber of candidates to be elected is fixed, (ii) there is no constraint on the structure

of the set of elected candidates, (iii) the electorate is not divided and the voters

are anonymous (Elkind et al. 2014). Then a natural rule is that each voter

can vote for several candidates and the candidates with the largest numbers of

votes are elected. Under “Unrestricted Approval Voting”, each voter can vote

for as many candidates as she wishes, giving at most one vote to each candi-

date (no “cumulative voting”). Under “Restricted Approval Voting”, a voter

cannot cast more than a fixed number of votes (usually set to the number of

candidates to be elected, but this needs not be). The contribution of this paper

is twofold. First, since there exists so far no complete and testable theory of

strategic voting at the individual level (best-responses) in multi-winner elections

with approval balloting, we propose such a theory, drawing on previous works

for the standard case of Approval voting for electing a single candidate (Laslier

2009, Nuñez 2010a). Second, we derive equilibrium predictions.

So far, the literature on multi-winner elections with approval balloting has

mainly focused on the different ways approval-type ballots can be counted for

electing a committee (of fixed size or not). Electing the candidates with the

largest approval scores is the simplest but not the only idea one can have (Fish-

burn 1981; Aziz et al. 2015). Kilgour (2010) surveys the many proposals which

have been made, and Laffond and Lainé (2010) survey the representativeness

issue under an assumption of separable preferences. This issue is often tackled

in the theoretical literature under the assumption that the committee size is not

fixed, which makes the problem similar to a multiple referendum problem. In

this vein, see Gehrlein (1985), Bock et al. (1998), Brams et al. (1997, 1998),

Brams et al. (2007). We here focus on the case –often met in practice– of a

fixed-size committee.

The issue of the voter’s behavior (which ballot to cast?) is not addressed by

the previously mentioned studies and one question left pending is to describe

“sincere” and “rational” behavior in these elections and to evaluate the level

of strategic voting induced by such a voting rule. One exception is Cox (1984)
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who studies the special case of multi-member districts with two members to be

elected and three candidates, when the voter is allowed to cast up to two votes.

He shows that depending on the context (anticipations about other voters’ be-

havior and own preferences), strategic voting in such an election entails either

voting for one’s preferred candidate only, or voting for one’s two preferred can-

didates. In this paper, we will characterize best-responses for any configuration

about the number of candidates to be elected, the number of candidates, and

the maximal number of votes a voter is allowed to cast. We will also consider

equilibrium predictions.

Section 2 describes the model. We will assume that voter preferences over

committees are separable and that there exists a tiny probability that any vote

might be mis-recorded. This latter assumption will guarantee that the voter

is uncertain about the realized scores of the candidates, even when she knows

other voters’ strategies (as is standard in strategic voting models, see for ex-

ample Myerson and Weber 1993). Section 3 provides some preliminary results

on the probability of some critical pivot events. Focusing first on the case of

“Unrestricted Approval Voting”, Section 4 studies best responses and Section

5 studies equilibria. Section 6 is devoted to the case where a limit is set on

the number of candidates a voter can approve (“Restricted Approval Voting”).

Section 7 tests the theory on real data gathered during an election of the re-

gional government of the canton of Zurich (composed of seven members), in

Switzerland, where the voting rule is essentially the one we study in theory. We

show that roughly 70% of the individual decisions on candidates are consistent

with our model of rational voting, and identify the main remaining point of dis-

crepancy between this theory and the observations. Section 8 concludes. Long

proofs are relegated in an appendix.

2 A model of multi-winner elections with ap-

proval balloting

In the sequel, although our analysis equally applies to some Parliamentary elec-

tions as well as to committee selection, we will use the committee terminology,

and will, for example, talk about the size of the committee when referring to

the number of candidates to be elected.

We first study (Sections 2 to 5) the case of “Unrestricted Approval Voting”,

where each voter can vote for as many candidates as she wishes, with no limit

on the number of votes she can cast. The case of “Restricted Approval Voting”

will be tackled in Section 6.

(Unrestricted) Approval Voting  seats have to be filled. The set of

candidates, of size    , is denoted by C. There are  voters,  = 1  

Voters vote by casting votes for candidates; they can give at most one vote

to a candidate (no "cumulative voting") but can vote for several candidates.

The  candidates with the highest numbers of votes are elected. Ties, if any,
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are randomly broken.

Voter preferences Voters preferences over committees are supposed to be

separable across candidates in the following sense: Voter  has a utility function

 for candidates, and the utility for the committee  is the sum
P

∈ (),

where  is any subset of size  of the set of candidates C. We assume for
simplicity that preferences over the set of candidates (as described by the utility

function ) are strict.

Preferences are common knowledge and there is no uncertainty about the

size () of the electorate.

Voter strategies For  = 1   , a strategy for voter  is a vector

 = ()∈C ∈ {0 1} 

where for all ,  = 1 if voter  casts a vote in favor of candidate  , and

 = 0 if voter  does not cast a vote for candidate  (we will also use the

terminology “casts a vote against candidate ” or simply “votes against ”).

Small mistakes As is standard in strategic voting models (see for exam-

ple Myerson and Weber 1993), we assume that the voter is uncertain about the

realized scores of the candidates, even when she knows other voters’ strategies.

Uncertainty is modelled as follows. As described above, preferences are common

knowledge and there is no uncertainty about the size () of the electorate. But,

for any vote which is actually cast for a candidate by a voter, there is a tiny

possibility of mistake, a mistake resulting in that vote not being recorded. Con-

versely, even if a voter has not voted for a candidate, there is a tiny probability

that this is wrongly recorded as a vote. We assume that the mistakes are made

independently across voters and across candidates.1

More formally: We suppose that there exists a number   0 such that, for

each ballot cast by a voter, and for each candidate :

• if  votes for , this vote is recorded with probability (1 − ), and with

probability  this vote is not recorded;

• if  does not votes for , this is correctly recorded with probability (1− ),

and with probability  a vote for candidate  is instead recorded.

For example, with  = 3 candidates, assume that a voter has cast the ballot

(1 1 0). Given our assumptions about the small mistakes made while recording

the votes, this ballot is correctly recorded as such with a probability (1− )3, it

is recorded as (0 1 0) with probability (1−)2 · (one mistake), ..., and recorded
as (0 0 1) with probability 3 (three mistakes).

These assumptions guarantee that, for any profile of ballots cast by the

voters, all electoral outcomes (realized scores of candidates) have a positive

probability.

1There is no independence across candidates in Nuñez (2010b).
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Voters’ beliefs Preferences and the structure of the game, including the

possibilities of mistakes described above, are common knowledge among the

voters.

We will assume that the voters in their computation of best responses neglect

the possibility of three-way ties; a cognitive assumption which seems realistic

for an individual taking part to a large election. When needed, we also assume

that the expected scores of any two candidates differ by at least three votes.

These assumptions are well suited for large elections (typically, political ones)

but would not be reasonable if one wanted to study small electorates.

3 Pivotal events with minimal requirement

In order to determine her best response against the other voters’ strategies, the

voter will have to estimate the probability of the different events where her vote

might be pivotal (that is, change the outcome of the election). Before turning

to the study of best responses (Section 4) and equilibria (Section 5), we start

by computing the order of magnitude of some critical pivot events. We will first

introduce the notion of minimal requirement, then use it to estimate the order

of magnitude of some critical events involving ties between candidates (Lemma

1 and Lemma 2).

Distribution of realized scores For a profile of ballots  = ()=1
and for a candidate , denote by b() =P  the number of voters who vote

for , and by () the random variable describing the realized score of candidate

 (taking into account the possibility of mistakes) obtained from these ballots.

For any two candidates  and 0, () and (0) are independent random
variables, with expectations b() and b(0) respectively. Note that the random
variable () can be written as:

() =
X


[(1− ) + (1− )]  (1)

where the , for  = 1   and  ∈ C, are × independent random draws

which take value 0 with probability (1 − ) and 1 with probability . Here,

 = 1 means that a mistake is made when recording voter ’s vote about

candidate . We will call  an “elementary event.” The probability of  is:

Pr[] = || × (1− )−||

where || = P
  denotes the total number of mistakes associated to the

elementary event . Since (1−)−|| =
P=−|

=0

¡
−||



¢
(−), one gets

that:

Pr[] =

−||X
=0

(−1)
µ
 − ||



¶
||+ (2)
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Notice that this is a polynomial in , whose first term of lowest degree is ||:
when the probability of mistake  goes to zero, the probability of the elementary

event  is asymptotically equivalent to ||.

Definition of the “requirement of an event" Fixing a profile of bal-

lots , all (aggregate) electoral outcomes, that is, all possible vectors of scores

(for the candidates), occur with positive probability (see expression (1) for the

realized score of candidate ). We define an event as a subset of this set of all

possible electoral outcomes. Any event  can be expressed with the help of

the elementary events  and thus has a probability which is a polynomial in 

For any event , let us denote by ()() the term of lowest degree of this

polynomial, where () is the smallest number of mistakes required to realize

, and () is the number of ways to realize  with () mistakes (given ).

The exponent () will be called the requirement of event . Note that,

from (2), for any elementary event  ∈ {0 1}× , () = || and () = 1

The requirement of an event is an indicator of how unlikely this event is

to happen. Indeed, between two events  and 0 with requirements  and

0 respectively, with   0, the probability of 0 is “vanishingly small”
compared to the probability of , meaning that when  tends to 0, the ratio

Pr[0]Pr[] tends to 0. This concept of requirement will play an important
role when deriving best responses.

Computation of the requirement of critical events The following

two lemmas will give some insights about the requirement of some critical events

involving ties between candidates.

Lemma 1 Given a profile of strategies (ballots)  = ()=1 , for any two

candidates  and 0, the requirement of the event “() = (0)" is |b()−b(0)|.
Lemma 1 states that, given the ballots cast by the voters, the probability of

candidates  and 0 obtaining the exact same realized scores is asymptotically
equivalent to |()−(0)|, where the exponent |b()− b(0)| is the absolute value
of the difference in expected scores between candidates  and 0. The proof of
the lemma is provided in the appendix (section A.1).

Consider now any candidate . We will say that realized scores are such that

candidate  is caught in an exact tie for election if whether  is elected or not

has to be determined by a random draw (at least two candidates, including ,

tie for the  -th position). The following lemma provides the requirement of

such an event, for all candidates.

Lemma 2 Given a profile of strategies  = ()=1 , assume that candidates

are labelled in such a way that:

b(1)  b(2)    b( )  b(+1)    b()
6



(i) If  ≤ , the requirement of the event “Candidate  is caught in an exact

tie for election" is b()− b(+1). Besides, any event of minimal requirement

where  is caught in an exact tie for election involves a tie with candidate +1.

(ii) If  ≥  + 1, the requirement of the event “Candidate  is caught

in an exact tie for election" is b( ) − b(). Besides, any event of minimal
requirement where  is caught in an exact tie for election involves a tie with

candidate  .

Note the crucial role played by two candidates:  and +1. The former

is the candidate whose expected score is the  -th largest – we will call this

candidate the weakest expected winner and the latter the candidate whose ex-

pected score is the ( + 1)-th largest – we will call this candidate the strongest

expected loser. The proof of the lemma is provided in the appendix (section A.2).

4 Best responses

4.1 Characterization

We first describe a voter’s, say voter ’s, best response against a profile of strate-

gies − = () 6= by the other  − 1 voters. Given this profile −, for all ,
denote by b−() =P 6=  the number of voters (other than voter ) who vote
for . Given our model of uncertainty, b−() is the expected score of candidate
, not taking into account the vote of voter . Proposition 3 describes the voter’s

best response in the case where the expected vote difference between any two

candidates is at least 3.

Proposition 3 Let b− denote the vector of expected scores obtained by the
candidates from the votes of all the voters except voter . Let the candidates be

labelled in such a way that:

b−(1)  b−(2)    b−( )  b−(+1)    b−() (3)

Assume that the expected vote difference between any two candidates is at least

3, that is, for any pair of candidates ( 0), |b−()− b−(0)| ≥ 3.
For  small enough, the best response of voter  is the following:

• For 1 ≤  ≤ : Voter  votes for  if and only if  ()   (+1),

• For  + 1 ≤  ≤ : Voter  votes for  if and only if  ()   ( ).

With assumption (3) regarding the ranking of candidates, the first  can-

didates are the expected winners, and the other candidates are the expected

losers.2

2The additional assumption that the expected vote difference between any two candidates

in − is at least 3 guarantees that the expected winners and losers in the election remain the
same whatever the ballot chosen by voter .
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Proposition 3 states that the voter should vote for an expected winner if and

only if she prefers that candidate to the candidate ranked  + 1, that is, the

strongest expected loser. Symmetrically, the voter should vote for an expected

loser if and only if she prefers that candidate to the candidate ranked  , that

is, the weakest expected winner. Best responses are thus quite easy to describe:

they entail voting by pairwise comparison with those two critical candidates:

the strongest expected loser and the weakest expected winner.

The proof of the proposition is presented in the appendix (A.3) but the

intuition is quite simple. It mostly derives from Lemma 2, which states that the

requirement of the event “Candidate  is caught in an exact tie for election” isb()− b(+1) if  ≤ and b( )− b() if  ≥ + 1.3

• Therefore, the most likely tie for election occurs between candidates 
(the weakest expected winner) and +1 (the strongest expected loser),

since the requirement of this event is b( )−b(+1). If voter  is pivotal,

it will most likely be in deciding who between candidate  and candidate

+1 will be elected.
4 Therefore, if she prefers candidate  to candidate

+1 (( )  (+1)), she should vote for candidate  and not

vote for candidate +1. Similarly, if ( )  (+1), she should

vote for candidate +1 and not vote for candidate  . Her decision

about candidates  and +1 is thus decided by this pairwise comparison

between the two candidates.

• Consider now candidate ,   , an expected winner. If candidate  is

caught in a tie, it will most likely be against candidate +1 (Lemma 2).

Therefore the voter should vote for candidate  if and only if () 

(+1): the vote for candidate  if decided by a pairwise comparison

with the strongest expected loser +1.

• Similarly, if candidate ,    +1, is caught in a tie, it will most likely

be against candidate  , and therefore the voter should vote for candidate

 if and only if ()  ( ): the vote for candidate  if decided by

a pairwise comparison with the weakest expected winner  .

4.2 Properties of best responses: Sincere and non-sincere

voting

According to the usual definition in the Approval Voting literature (Brams

1982), a ballot is “sincere” for a voter if, when the voter approves a candi-

3Lemma 2 takes into account the votes of all voters, including voter . To derive the best

response of voter , the argument has to be adjusted to take into account the fact that voter

 takes the votes of other voters as given, but not her. These adjustments are made in the

proof in the appendix, but the intuition about the orders of magnitude of the different pivot

events remains similar.
4Lemma 2 deals with exact ties for election. A voter can also be pivotal in case of a near tie

(one vote margin) for election between two candidates. Noting that a requirement of a near

tie is no larger than the requirement of an exact tie plus one, the arguments carry through

when explicitly taking into account the possibility of near ties (which is done in the proof).
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date , she also approves all the candidates she strictly prefers to . Proposition

4 characterizes the parameters of the electoral context such that a best response

always entails casting a sincere ballot, whatever the voter’s preferences and the

other voters’ strategies.

Proposition 4 Consider the best response function described in Proposition 3,

for → 0.

• If = 1 or  =+1, the best response always entails casting a sincere

ballot, whatever the voter’s preferences and the other voters’ strategies.

• Otherwise, there exist voter’s preferences and other voters’ strategies, such
that the best response entails casting a non-sincere ballot.

Laslier (2009) noticed that a best response always entails sincere voting

when there is one single candidate to elect ( = 1). Cox (1984) noticed that

a best response always entails sincere voting when there are two candidates to

be elected from a set of three candidates ( = 2 and  = 3).5 The first

point of the Proposition generalizes this result to the case where the number of

running candidates exceeds only by one the number of candidates to be elected

( =  − 1).
But it also shows that these two cases ( = 1 and  =  − 1) are rather

specific in the sense that in any other configuration about the number of seats

and the number of candidates, there will be situations (preferences and antici-

pations about other voters’ behavior) such that strategic voting is non-sincere.

The intuition for the existence of non-sincere ballots is that the strategic rec-

ommendation entails voting by pairwise comparisons, but that expected winners

and expected losers are compared to two different candidates (the strongest ex-

pected loser and the weakest winner, respectively). Note that if all candidates

where compared to the same benchmark, sincere voting would result (as is ba-

sically the case when  = 1: all candidates –but himself– are compared to

the expected winner).

The proof of the proposition is in the appendix (section A.4).

5 Equilibrium

5.1 Characterization

Let us now study the nature of equilibria consistent with the strategic behavior

described in Proposition 3. For simplicity, we assume that  is odd .

5To be precise, the voting rule studied by Cox was slightly different from the one considered

here, since voters are only allowed to cast up to two votes (“Restricted Approval Voting”).

Yet, it is straightforward to check that strategic voting implies never voting for one’s least

prefer candidate, therefore, when there are only three candidates, a best response entails

casting at most two votes. The two rules are therefore equivalent from a strategic point of

view, for three candidates.
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Denote by( 0) the number of voters who prefer6 candidate  to candidate
0. For  = 1  , denote by −( 0) the number of voters, other than voter
, who prefer candidate  to candidate 0 We assume that for all  and for
all ( 0), (00 000), with ( 0) 6= (00 000), the following condition is satisfied:
|−( 0)−−(00 000)| ≥ 3 Clearly, this is not totally general. But this

simplification is reasonable when the number of voters is large. The following

characterization of an equilibrium will be useful in the sequel.

Proposition 5 A profile of strategies ()=1 is a pure equilibrium if and

only if there exists a partition of the set of candidates into two candidates

(call them  and +1) and two subsets of candidates, {1  −1} and
{+2  } such that:

1. (  +1)  (+1  )

2.    =⇒ ( +1)  (  +1)

3.    + 1 =⇒ (  )  (+1  )

4. For  = 1   ,  is the best response described in Proposition 3 against

the expected scores (from the  − 1 other voters) defined as follows:

b− () = −( +1) if  ≤b− () = −(  ) if  ≥ + 1

Then the (expected) winners are the members of the set {1  }. The
expected scores are b() = ( +1) if  ≤  and b() = (  ) if

 ≥ + 1.

This characterization makes clear a strong link between approval voting for

a committee and a notion of “majority rule”, as noted in the following remark,

whose transparent proof is provided.

Remark 6 In a pure equilibrium (if any):

(i) A candidate is an expected winner if and only if he is approved by at least half

of the voters,

(ii) The Condorcet winner (if it exists) is an expected winner.

Proof. Part (i). Consider an equilibrium, where the (expected) scores of

the candidates are:

b(1)  b(2)    b( )  b(+1)    b()
From the characterization in Proposition 5, the expected scores are b() =

( +1)  (  +1) if    and b() = (  )  (+1  )

if    + 1.

6Remember we assume strict preferences over the set of candidates.
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From condition (1) in the characterization of a pure equilibrium, we know

that: (  +1)  (+1  ). Since (  +1) +(+1  ) =  ,

this implies that b( ) = (  +1)  2 and b(+1) = (+1  ) 

2.

Thus b()  2 for all  ≤ and b()  2 for all  ≥ + 1.

Part (ii). At equilibrium, an expected loser has to be defeated in a pairwise

comparison with the weakest expected winner. Since the Condorcet winner

(when it exists), would defat any other candidate in a pairwise vote, this shows

that the Condorcet winner (if it exists) has to be an expected winner.

An alternative interpretation: Trembling hand perfection There

is a strong link between a pure equilibrium with the model of small mistakes

introduced in section 2 and the concept of trembling hand perfect equilibrium.

Trembling hand perfect equilibrium is a refinement of Nash equilibrium due

to Selten (1975). A trembling hand perfect equilibrium is an equilibrium that

takes the possibility of off-the-equilibrium play into account by assuming that

the players, through a “slip of the hand" or tremble, may choose unintended

strategies, albeit with small probability. One may check that a pure equilibrium

in our game with recording mistakes is a trembling hand perfect equilibrium in

the game with no recording mistakes (with trembles occurring with probabilities

consistent with the model of small mistakes described here).

5.2 Existence and uniqueness

The following two remarks provide the theoretical answers to the questions of

existence and uniqueness of equilibrium.

Remark 7 Non existence of equilibrium. Whenever    + 1, there

may exist no pure equilibrium.

Proof. Take = 1. It is easy to check that a pure equilibrium exists if and

only if there exists a Condorcet winner. Indeed, from the characterization of

equilibrium above (Proposition 5), there must exist some candidates 1 2 such

that conditions 1 and 3 are satisfied (condition (2) is empty). Condition (1)

yields:  (1 2) 

2
. Condition (3) yields:  ≥ 3 =⇒ ( 1)  (2 1)

Since (2 1) 

2
, one sees that 1 is a Condorcet winner. Since a Condorcet

winner may not exist, there will be profiles of preferences for which there is no

pure equilibrium as soon as there are at least three candidates.

For  ≥ 2, counter-examples are easily found by considering a preference
profile with  − 1 candidates who Pareto-dominates all the others, and no
Condorcet winner among the remaining candidates, which is possible as soon

as there are at least  + 2 candidates.

Remark 8 Multiplicity of equilibria. For = 1, if there is an equilibrium,

it is unique. For  ≥ 2, there may exist several pure equilibria.

11



Proof. Take  = 2 and  = 4. Let    and  denote the candidates.

Consider the following matrix .

    

 0 4 5 1

 −4 0 2 6

 −5 −2 0 3

 −1 −6 −3 0

We know from Debord (1987) that there exists a preference profile for which

the majorities ( ) are positive affine transformations of ( ). Since our

characterization of equilibrium only involves comparisons between the numbers

( ), we do not need to know exactly the preference profile and we can simply

use the matrix .

One can check that the following three situations are equilibria:⎛⎜⎜⎝
 (5)

 (2)

 (−2)
 (−6)

⎞⎟⎟⎠ 

⎛⎜⎜⎝
 (6)

 (1)

 (−1)
 (−5)

⎞⎟⎟⎠ 

⎛⎜⎜⎝
 (3)

 (1)

 (−1)
 (−4)

⎞⎟⎟⎠ 

In the first case,  and  are expected winners with respectively 5 and 2 (relative)

votes, and  and  are rejected with respectively −2 and −6 votes. These

numbers are precisely the pairwise scores of  and  compared to , and of  and

 compared to . This situation is thus an equilibrium. The reader can check

that the other situations, in which the elected candidates are again  and , or

are  and  are also equilibria.

The same example can easily be extended to larger values of  by adding

Pareto-dominant candidates.

For  = 1, it was proven in the proof of Remark 7 that a pure equilibrium

exists if and only if there exists a Condorcet winner. Without indifferences or

ties in the vote matrix, there cannot be two Condorcet winners. Denote by ∗

the unique Condorcet winner. At equilibrium, the expected score of  6= ∗ is
( ∗). Denoting by 2 the candidate such that 2 = argmax6=∗ ( ∗), the
expected score of ∗ is (∗ 2). So that uniqueness of pure equilibrium holds.

The two previous remarks raise several questions: How serious are the two

problems of non-existence and multiplicity? We have no full answers to these

questions in general, but the next section will provide precise answers for a

non-trivial domain of preferences.

5.3 Majority-transitive and single-peaked preference pro-

files

If the majority tournament is transitive, a pure equilibrium exists for any com-

mittee size. More exactly the following result holds.
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Proposition 9 Suppose that there exists a set of  candidates such that any

candidate in this set beats, according to pairwise-majority voting, any candidate

not in this set. Then there exist an equilibrium in which these  candidates are

elected.

Proof. Let  be the set of candidates that beat the others, and let = C\.
Let  ∈  and  ∈  be two candidates such that

( ) = min
∈∈

( )

We will check that the expected scores vector defined by b() = ( ) for all

 ∈  and b() = ( ) for all  ∈  is an equilibrium. By definition of ,

for all  ∈ , b() ≥ b() = ( ). Likewise, for all  ∈ , b() = ( ) =

−( ) ≤ −( ) = ( ). Moreover, ( )  2  ( ) henceb correctly ranks all the candidates.
So existence of equilibrium is guaranteed in that case, but there can be many

equilibria. When the majority tournament associated with the preference profile

is transitive, the proposition applies to the  first candidates according to the

majority tournament order, and thus an equilibrium exists for any  . The

example we used previously (Remark 8) to demonstrate the possible multiple

equilibria is in fact a transitive tournament, as can be easily seen on the matrix

. Notice that the example shows that different equilibria may not only results

in different (expected) scores vectors but also in different elected committees.

A nice application is the case of single-peaked preferences. This point is

stated in a separate proposition. Part of it can be derived from the previous

one and Remark 6; in the appendix (A.5) we complete a proof which provides a

more detailed description of what can and cannot happen for the single-peaked

domain.

Proposition 10 Assume that the candidates can be ordered (in a one-dimensional

space) in such a way that voters have single-peaked preferences over the set of

ordered candidates. In that case:

1. There exists an equilibrium where the first  candidates according to the

majority tournament are elected.

2. In any equilibrium the Condorcet winner candidate is elected, and the

elected committee forms a segment of the ordered set of candidates.

3. At most  different committees can be elected at equilibrium.

Proposition 10 again highlights the strong relationship between equilibrium

under strategic approval voting and the majority rule. Remark 6 stated that

in a pure equilibrium, all expected winners are approved by a majority of vot-

ers. Proposition 10 states than when preferences are single-peaked, the first 
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candidates according to the majority tournament are expected winners in some

equilibrium.

Proposition 10 states that if voters have single-peaked preferences, there

are at most  distinct sets of elected candidates which can be supported at

equilibrium. We provide in the appendix (A.5, after the proof of Proposition 10)

a simple example showing that this maximum number can be reached: there can

be  distinct sets of winners at equilibrium. Besides, in one of these equilibria,

among the  elected candidates, only the Condorcet winner belongs to the set

of the  top candidates according to the majority tournament.

6 Restricted Approval Voting

This section briefly tackles the rule called “ -Restricted Approval Voting”,

where a voter can only approve up to  candidates. The case  = 1 is thus

simple Plurality rule. Unrestricted Approval Voting corresponds to any  larger

than , the number of candidates. The case  = , where the number of votes

equals the number of seats, seems natural (it is the one used in the canton of

Zurich, on which the theory will be tested in Section 7) but does not seem to

have any specific theoretical property, as will be seen.

We keep the same model as in Section 2, with a slight change in the de-

finition of the strategies. For  = 1   , a strategy for voter  is a vector

 = ()∈C ∈ {0 1} , such that
P

∈C  ≤  , where for all ,  = 1 if

voter  casts a vote in favor of candidate  , and  = 0 if voter  does not cast a

vote for candidate . We keep the description of mistakes made when recording

the votes for candidates exactly the same as in Section 2 (in particular, we keep

the assumption that mistakes are independent across candidates, meaning that

we do not rule out the possibility that strictly more than  (positive) votes are

recorded).

6.1 Best responses

Proposition 11 Let b− denote the vector of expected scores obtained by the
candidates from the votes of all the voters except voter . Let the candidates be

labelled in such a way that:

b−(1)  b−(2)    b−( )  b−(+1)    b−()
Assume that the expected vote difference between any two candidates is at least

3, that is, for any pair of candidates ( 0), |b−()− b−(0)| ≥ 3.
For  small enough, the best response of voter , when he has at most  votes,

can be characterized as follows:

1. The voter identifies the set of expected winners (1 to ) and that of

expected losers (+1 to ).
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2. If 1 ≤  ≤  , define candidate ’s “main contender” as +1 (the

strongest expected loser) and if  + 1 ≤  ≤ , define ’s “main con-

tender” as  (the weakest expected loser).

3. The voter ranks the candidates according to (the inverse of) their distance,

in terms of expected votes, to their main contender.

4. The voter considers all the candidates in turn, according to the priority

order defined at the previous step. As long as she does not hit the vote-

budget constraint ( votes), she votes for a candidate if and only if her

utility for this candidate is larger than her utility for its main contender.

This Proposition is a generalization of Proposition 3, the only difference

being, the appearance, in Step 4, of the vote constraint. The proof of Proposition

11 follows the same reasoning as the proof of Proposition 3 (see Section A.3,

Remark 12).

As noticed above, the only difference between "Unrestricted Approval" and

"Restricted Approval" is the appearance, in Step 4, of the vote constraint.

Given the limited number of votes, the voter has to consider the candidates

lexicographically, in the order defined in Step 3. In this order, candidates are

ranked according to their distance to their most likely contender (in numbers of

expected votes). This is equivalent to ranking them by decreasing probability of

them being caught in a tie for election. Indeed, as noticed when describing the

intuitive content of Proposition 3, the most likely pivot-event is a tie between the

two candidates who are expected to rank  -th and +1-th (here candidates

 to +1). What is the next most likely pivot-event? Note that all the other

pivot events imply some order reversals among candidates, compared to the

expected order. Which is the next pair of candidates between which the voter is

most likely to be pivotal? Our assumptions imply that it will be either the pair

{  +2} or the pair {−1 +1}, depending on whether the difference in
expected scores between  and +2 is larger or smaller than the difference in

expected scores between −1 and +1. Indeed, they are the two pairs which

require the less order reversals compared to the expected outcome. Similarly,

other pivot-events can be ranked by decreasing probability of occurrence.

Note that in that case, there is no reason to expect that the strategic recom-

mendation will entail sincere voting. Indeed, there are now two potential causes

as to why the strategic recommendation might not be sincere:

(1) As under "Unrestricted Approval", the expected winners are compared

to the strongest expected loser, whereas the expected losers are compared to the

weakest expected winner. This fact was exploited to construct counter-examples

in the proof of Proposition 4.

(2) The constraint on the number of votes may be binding. The voter,

if given the opportunity to cast more votes, would vote for candidates higher

in her preferences; but she has used all her votes on candidates with higher

probability to be caught in a tie for election. One extreme case is  =  = 1

(simple plurality to elect one candidate), where the voter should vote for her
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preferred candidate among the two candidates who are expected to receive the

most votes: she should desert her preferred candidate whenever he is not one of

the two main candidates.

6.2 Equilibrium

Consider the following example with  = 2 candidates to be elected,  = 4

candidates, and  = 85 voters. Denote the candidates by    . The next

Table indicates that, for instance, 45 voters prefer  to ,  to , and  to .

(45) (10) (20) (10)

∗ ∗ ∗ ∗
∗ ∗ ∗ 

   

   

This preference profile is single-peaked with respect to the order    

  . Assume that the voters vote for the starred alternatives. In that case,

the resulting expected scores are:

b() = 45 + 10 = 55b() = 45b() = 10 + 20 + 10 = 40b() = 20

The reader can check that the described ballots (voters vote for the starred

alternatives) are in equilibrium if the number of allowed votes is at least two

per voter ( ≥ 2). For example, consider a voter  with the first ranking. If
she expects other voters to vote for the starred alternatives, her anticipations

about expected scores are as follows:

b−() = 44 + 10 = 54b−() = 44b−() = 10 + 20 + 10 = 40b−() = 20

The weakest expected winner is candidate  and the strongest expected loser .

According to Step 3 in Proposition 11, the resulting order of priority for consid-

ering the candidates is the following: first, consider the two critical candidates

( and ), second, consider candidate  (whose distance to his main challenger

 is 54 − 40 = 14), third, consider candidate  (whose distance to his main

challenger  is 44− 20 = 24). If  ≥ 2, the strategic recommendation is to vote
for  and  (preferred to ).

Now suppose that another candidate shows up but that the maximal number

of votes is still set to two ( = 2). If the voters stick to the previous votes, the

new candidate obtains at most 10 votes (from the last group of 10 voters, who
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still have one available approval), and this is an equilibrium for the constrained

 = 2 voting rule. This remark holds true whatever the voters’ preferences for

the new candidate are. For instance this candidate could be the top choice of

all the voters and still not be elected at this equilibrium.

It is not difficult to build such counter examples for any number  . The same

coordination problem that is at play in the previous example has been described

in theory in Myerson and Weber (1993) and Myerson (2002) for Plurality Rule

in slightly different models (“Above the Fray”). The phenomenon seems robust,

so that one can conclude that, at least in theory, the Restricted Approval voting

rule suffers pathologies similar to those of the Plurality rule.

7 Empirics

7.1 The voting rule and the survey

The election of the seven members of the regional government in Zurich follows

a voting rule which is almost exactly Approval Voting with a limit of seven on

the number of votes. Notable differences are (i) the fact that there may be a

second round in case not all seats are filled after the first round, and (ii) the

fact that voters can approve of persons who are not listed as official candidates.

As to (i), a second round is organized if less than seven candidates reach a

threshold of votes. In Zurich, the threshold is the total number of candidate

votes cast (that is, individual approvals for candidates), divided by twice the

number of seats. In practice, this is so low that it has never been the case in

Zurich recent history that a second round was needed. Therefore (i) appears

to be purely formal and can be neglected. As to (ii), the votes cast on non-

candidates amount to about 8% in the election we will study now; but, because

they are dispersed, these votes have no consequences, in theory nor in practice.

Therefore the Zurich election constitutes a case-study of  = 7-Restricted

Approval Voting. In what follows, we take advantage of available individual

data about preferences and votes to gauge the empirical relevance of the theory.

We study the election held on April 3, 2011. There were 9 registered can-

didates. Our analysis is based on data collected as part of the research project

Making Electoral Democracy Work (Blais 2010). A survey was conducted on the

occasion of the parliamentary and governmental elections. Respondents were

asked, amongst other things, their votes and their evaluations of the candidates,

through the following question:

Please rate each of the following candidates on a scale from 0

to 10, where 0 means that you strongly dislike the candidate and 10

means that you strongly like the candidate.

A total of 502 respondents fully answered the vote and evaluation question.

They form our data basis.7

7The survey was conducted on line by Harris International, relying on a panel from the
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7.2 Empirical method

Following the theoretical developments of the previous sections, two things are

needed in order to predict what a strategic voter should vote: (i) the anticipa-

tion, by the voter, of the candidate scores, and (ii) her ordinal preference about

candidates.

As to (i), we will assume rational expectations and take as expected scores

the final scores for this election.

As to (ii), we have the relevant information through the provided evaluations,

except when the voter gives the same grade to two candidates who have to be

compared. In that case, we give equal chance to each comparison.8

Table 1 provides key information about this election and the elements needed,

according to our theoretical model, to compute each voter’s rational response.

The weakest expected winner is M. Graf and the strongest expected loser is H.

Hollenstein.

Through an ad hoc program, we computed, for each of the 502 voters in our

sample, the predictions derived from the model developed above. We can then

aggregate these individual predictions, and compute the predicted scores of each

official candidate (if voters were to react to official scores). Figure 1 compares,

for each official candidate, his or her observed score (in our sample) with his

or her predicted score (for our sample). One can see that the strategic model

performs quite well in explaining the electoral scores observed in the sample.

The average number of approval per ballot (out of seven possible) is 4.39 in

the sample and 4.23 in the predictions. More finely, Figure 2 depicts the distri-

bution of the number of votes per ballot, in the observed sample, and according

to the predictions. One can see that the main mistake done by the model is to

underestimate the number of voters who cast a full ballot (7 candidates in that

case). The model predicts that 12.3% of the ballots should approve 7 candidates

but in reality, nearly twice more do so.

At the individual level, we have 502 respondents and 9 candidates so that

we have 502*9=4518 vote predictions. On average the percentage of correct

prediction is 69%, and is similar for positive (we predict that a voter approves a

candidate) and negative (we predict that a voter does not approves a candidate)

predictions. But the reliability of the strategic model differs from one candidate

to the other, between 59% and 78%. (See Lachat et al (2014) for more details.)

These observations suggest that the behavior of voters can be described in

the following terms: Some voters approve seven candidates simply because there

are seven positions to fill. Another part of the population votes in a smoother

way, which is rather well captured by the model we have presented. Given that

voters from the second group should also sometimes vote for 7 candidates (about

12.3% of them according to our figures), it comes that the voters of the first

group might represent about 10% of the electorate.

Swiss polling firm Link. The sample was representative as to age, gender, and education level.

A more detailed analysis of this election can be found in Lachat et al. (2014).
8Because this may happen several times, and for the sake of simplicity, what we did is to

replicate each participant 100 times, breaking all ties randomly.
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Figure 1: Electoral scores (% of voters in the sample)
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Figure 2: Distribution of the number of votes per ballot
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(1) (2) (3) (4) (5) (6)

Candidates
Number

of votes

Rank in

official

election

Main

contender

Distance

to main

contender

Priority

order

M. Fehr 137035 1 Hollenstein 18548 7

T. Heiniger 134161 2 Hollenstein 15574 6

E. Stocker 129143 3 Hollenstein 11456 5

U. Gut 129349 4 Hollenstein 10862 4

M. Kagi 123159 5 Hollenstein 4672 3

R. Aeppli 121144 6 Hollenstein 2657 2

M. Graf 120815 7 Hollenstein 2328 1

H. Hollenstein 118147 8 Graf 2328 1

M. Ingold 68996 9 Graf 51819 8

Others 93485

Table 1: Information needed to establish the strategic recommendation

8 Conclusion

We proposed a model of strategic voting in multi-winner elections with approval

balloting. This model requires that the voters know their own preferences and

evaluate the relative likelihoods of the possible electoral outcomes. It rests on

a number of cognitive hypotheses: voters are only interested in the result of

the election (no expressive motives), their have separable preferences, they are

essentially rational, and they neglect three-way ties. All these hypotheses are

questionable but they together have the virtue of producing definite predictions.

Equipped with these predictions, one can tackle positive and normative ques-

tions: Do people really behave like the model suggests? If yes, is it a good thing?

The last section has shown that our purely theoretical model fits relatively well

the actual behavior of the voters in one election we were able to study. It is

therefore worth discussing what elements the theory can bring for a normative

discussion of this voting rule.

We noticed that under “Unrestricted Approval” (no limit on the number of
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votes), the equilibrium properties of the model were very much in the spirit of

an implementation of a generalization of the Condorcet principle to the case of

a committee.

We found that, whatever  ≥ 1, at equilibrium (if any), a candidate is

elected if and only if it is supported by more than half of the electorate, and

the Condorcet winner (if it exists) is part of the elected committee. Besides,

when the majority tournament is transitive, there exists an equilibrium where

the first  candidates according to the tournament are elected. This extends

the finding by Laslier (2009) which showed that when  = 1, (Unrestricted)

Approval Voting implements the Condorcet principle in the sense that strategic

voters in equilibrium elect the Condorcet winner whenever it exists.

It should be noted that these properties are lost whenever there is a limit

on the number of votes a voter is allowed to cast (Restricted Approval Voting).

The example in section 6.2 highlights that, at least in theory, the Restricted

Approval voting rule suffers from pathologies similar to that of the Plurality rule.

In particular, it is prone to suffer from potential severe coordination problems.

For instance, there can be situations where a candidate is the top choice of

all the voters, and still is not elected at this equilibrium. From a normative

point of view, “Unrestricted Approval Committee" seems more attractive than

“Restricted Approval".

So far, when commenting in the paper upon the normative properties of var-

ious Approval Voting rules, the focus has been on their propensity to implement

some Condorcet principle. Note that this criterion is not the only one one may

have in mind when discussing the normative properties of rules designed to elect

a committee. In particular, some concerns about the representativeness of the

committee might be present. The following discussion will show that Approval

Voting might perform quite poorly in that dimension.

Indeed, it should be highlighted that an important property of Approval

Voting (and of the idea of a Condorcet winner) is lost when we go from  = 1

to   1.

Suppose that the same political party proposes, in a single-member district

( = 1), two candidates instead of one, and suppose that the preferences of the

voters are such that the voters are chiefly interested in the parties, so that these

two fellow candidates are ranked next to each other in every voter’s preference.

This manipulation9 does not alter the fact that this party has a majority or not

against an other party. In the very same manner, Unrestricted Approval Voting,

by definition, lets the voter vote for several candidates if she wishes, and is thus

immune to vote splitting or candidate duplication.

Now suppose that, in a district with   1 seats, all parties send  can-

didates, instead of only one. Then, under Unrestricted Approval Voting, the

Condorcet-winning party on its own will gather all the seats, leading to a very

poor representation of the different groups of voters in the electorate. In other

9This kinds of variation in the preference profile has a long history in Choice Theory; see

the “Axiom 2.6" in Milnor (1951), the “Independence of Clones" in Tideman (1987), the

“Composition-Consistency" in Laffond et al. (1996).
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words, candidate duplication is ineffective under Approval Voting when  = 1

but is effective as soon as   1.

A Appendix

A.1 Proof of Lemma 1

Take as given the profile of strategies (ballots) of the voters,  = ()=1 .

For any two candidates  and 0

Pr [() = (0)] =
=X
=0

Pr [() = (0) = ] 

and, by independence:

Pr [() = (0)] =
X
=0

(Pr [() = ] · Pr [(0) = ]) 

Without loss of generality, assume that b() ≥ b(0).
Consider first the case where   b(). The first order probability of the

event () =  is µ
 − b()
− b()

¶
−() (4)

Indeed, as one can easily check, the event () =  requires at least  − b()
mistakes, and can indeed result from that precise number of mistakes. One can

and must pick −b() individuals who voted against , among the  −b() who
voted against , and change their votes to a YES vote in favor of candidate .

Thus the probability (4). A similar argument holds for the probability that 0

get  votes, therefore, the first order probability of the event () = (0) = 

is: µ
 − b()
− b()

¶µ
 − b(0)
− b(0)

¶
2−()−(0)

Similarly, when   b(0), the first order probability of the event () =  isµ b()b()− 

¶
()−

(pick b()− individuals among the b() who voted for , and change their votes
to a NO vote for candidate ). Therefore the first order probability of the event

() = (0) =  is:µ b()b()− 

¶µ b(0)b(0)− 

¶
()+(0)−2
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Last, when b(0) ≤  ≤ b(), the first order probability of the event () =
(0) =  is : µ b()b()− 

¶µ
 − b(0)
− b(0)

¶
()−(0)

When   b(), 2 − b() − b(0)  b() − b(0) and when   b(0) b() +b(0)− 2  b()− b(0). Therefore, one can see that the event () = (0) has
first order probability:⎛⎝ ()X

=(0)
µ b()b()− 

¶µ
 − b(0)
− b(0)

¶⎞⎠ · ()−(0)
so that the requirement of the event () = (0) is b()− b(0). Q.E.D.

A.2 Proof of Lemma 2

Given a profile of strategies ()=1 , denote by  the random variable

describing the  -th largest score obtained from the realized votes of all voters.

Formally: for any vector of realized scores (())∈C , let  be the unique

number which satisfies the following two conditions:

1. |{ ∈ C : ()  }| ≤ − 1,
2. |{ ∈ C : () ≥ }| ≥ .

Candidates with scores strictly larger than  are elected, candidates with

scores strictly smaller are not elected, and a candidate with score  is elected

either for sure (if he is the only candidate with realized score  ) or with some

probability (in case of a tie with other candidates).

The event “Candidate  is caught in an exact tie for election” is the event

“() =  and there exists at least one other 0 6=  such that () = (0) =
”.

Consider first the case where  ≤ . Let us show that the requirement

of the event “() =  and there exists at least another 0 6=  such that

() = (0) = " is b()− b(+1).

Note that b() − b(+1) mistakes (from reference scores b) are sufficient
to reach this outcome. Indeed, if out of the b() voters who did vote for ,
one picks b() − b(+1) of them and change their votes (no other mistake

being made), the resulting scores are () = b() for all  6=  and () =b(+1) = (+1). Note that this situation involves a two-way tie between

candidate  and candidate +1.

One can also check that any other vector of mistakes inducing that candidate

 is caught in an exact tie for election implies at least as many mistakes.
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Therefore the requirement of the event “() =  and there exists at least

one other 0 6=  such that () = (0) = ” is exactly b()− b(+1).

Besides, one may check that the event “() =  and there exists at

least one other 0 ∈ { + 1} such that () = (0) = ” (that is, not

having candidate +1 part of the tie for the th position) involves strictly

more mistakes.10

Consider now the case  ≥  + 1. Let us show that the requirement

of the event “() =  and there exists at least another 0 6=  such that

() = (0) = " is b( )− (b).
Note that b( ) − b() mistakes (from reference scores b) are sufficient to

reach the outcome () = ( ) =  . Indeed, if out of the  − b() voters
who did not vote for , one picks b( ) − b() and change their votes (no
other mistakes being made), the resulting scores are () = b() for all  6= 
and () = b( ) = ( ).

One can check that any other vector of mistakes inducing this outcome im-

plies at least as many mistakes, therefore the requirement of the event “() =

 and there exists at least one other 0 6=  such that () = (0) = "

is exactly b( )− b().
Besides, one may check that the event “() =  and there exists at least

one other 0 ∈ {} such that () = (0) = " involves strictly more

mistakes.11 Q.E.D.

A.3 Proof of Proposition 3

Consider a profile of strategies (ballots) from voters other than voter : − =
() 6=. Let b− denote the vector of expected scores obtained by the candidates
from the votes of all the voters except voter . Let the candidates be labelled in

such a way that:

b−(1)  b−(2)    b−( )  b−(+1)    b−()
Assume that the expected vote difference between any two candidates is at least

3, that is, b()− b(+1) ≥ 3 for all  = 1   − 1.
To start the proof, consider a voter who contemplates any ballot  she could

cast. Given the strategies − of the other voters, the ex post utility that voter
 derives from ballot  depends on the realization of the random variable 

10Note nevertheless that there are events with requirement ()−(+1) where candidate

 is caught in a tie for election with candidate +1 but also with another candidate. Indeed,

consider an event where ()−( ) votes for  are not recorded, and where ( )−(+1)

NO votes for +1 are wrongly recorded as YES votes for +1, no other mistake being made.

The requirement of this event is ()− (+1) and it involves a three-way tie for election

between  , +1 and . As mentionned in the description of the model (Section 2), we

assume that the voter neglects this type of events involving three-way ties.
11Here again, note that there exists an event with requirement ( ) − () involving a

three-way tie for election between  , +1 and . We assumed that the voter neglects this

type of events involving three-way ties.
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describing the mistakes made when recording the ballots (remember  = 1

means that a mistake is made when recording voter ’s vote about candidate ,

see section 3). Denote this ex post utility by ( − ). The expected utility
derived from strategy  is

P
 ( − ) Pr[]

Consider two ballots,  and 0,the voter prefers  to 
0
 if and only if

∆ =
X


( − ) Pr[]−
X


(
0
 − ) Pr[] ≥ 0

Obviously all the elementary events  such that ( − ) = (
0
 − )

cancel in this inequality so that the sum can run over elementary events such that

( − ) 6= (
0
 − ). This remark, with the fact that the probabilities

Pr[] are polynomials in  (the requirement of event  being ||), provides the
technique for finding best responses to an expected score vector b− when  is

small. Let  be the requirement of the event ( − ) 6= (
0
 − ).

Then:

∆ =
X

:(−)6=(0−)
||=

[( − )− (
0
 − )] Pr[]

+
X

:(−)6=(0−)
||

[( − )− (
0
 − )] Pr[]

The first part, where the sum runs over elementary events  with requirement

, is a polynomial in  of leading term , where

 =
X

:(−)6=(0−)
||=

[( − )− (
0
 − )]

does not depend on .

The leading term of the second part has a strictly higher exponent, hence

 = lim→0∆−.
It follows that, for  small enough, the sign of ∆ is the sign of  if  6= 0.

This implies that, in order to know whether  yields larger expected utility

than 0, one can restrict attention to those events which realize ( − ) 6=
(

0
 − ) with the smallest number of mistakes. Those events will involve

ties (or near ties, with a one vote margin) for election of some candidates.

Given −, what are the ballots  and 0 and the events  which realize

( − ) 6= (
0
 − )?

A necessary condition is that the ballots  and 0 differ on a candidate
which is caught in a tie (or a near tie) for election. Under our assumption

that the voters in their computation of best responses neglect the possibility

of three-way ties, we will focus on ties and near ties which involve exactly two

candidates. Two candidates are said to be caught in an exact tie for election if

the realized scores, given the votes of all the voters other than , are such that
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both candidates receive the th highest score; they are said to be caught in a

near tie for election if realized scores given the votes of all the voters other than

, are such that one of the candidate get the  -th highest score and the other

candidate exactly one less vote. In both types of events, by voting for one of

these candidates but not for the other, voter  can change the outcome of the

election. Note that the difference between requirement of a tie and requirement

of a near tie, for any given two candidate, is at most two.

Now, what are the events and ballots which realize ( − ) 6= (
0
 − )

with the smallest number of mistakes?

Lemma 2 provides the answer. A straightforward adaptation of Lemma 2

states that, given the strategies − of all voters but , the requirement of the
event “Candidate  is caught in an exact tie for election (not taking into account

the vote of voter )" is b−()−b−(+1) if  ≤ and b−( )−b−() if  ≥
+1. Therefore, the most likely exact tie for election occurs between candidate

 (the weakest expected winner) and candidate +1 (the strongest expected

loser), since the requirement of this event is b−( ) − b−(+1). Given our

assumption that the expected vote difference between any two candidates are at

least 3, the most likely near tie (that is, with a one vote margin) for election also

occurs between candidates  and +1. Therefore, if voter  is pivotal, it will

most likely be in deciding who between candidate  and candidate +1 will

be elected. Therefore, if she prefers candidate  to candidate +1 (( ) 

(+1)), she should vote for candidate  and not vote for candidate +1.

Similarly, if ( )  (+1), she should vote for candidate +1 and not

vote for candidate  . Her choice about candidates  and +1 is thus decided

by this pairwise comparison between the two candidates.

What is the next most likely pivot-type event, involving at least one candi-

date other than candidate  and candidate +1?

Again, Lemma 2 provides the answer. It will be either a tie (or near tie) for

election between −1 and +1, or a tie (or near tie) for election between 
and +2, depending on whether b−(−1) − b−(+1) is smaller or larger

than b−( ) − b−(+2). More generally, the results in Lemma 2 allow us

to rank the different two-way ties for election involving candidates other than

candidates  and +1. Most specifically, if 1 ≤  ≤ , define candidate ’s

“main contender” as +1 and if  +1 ≤  ≤ , define ’s “main contender"

as  . Then, rank the candidates according to (the inverse of) their distance,

in terms of expected votes, to their main contender. As seen above, candidates

 and +1 share the first rank in this ordering.

Consider now the candidate with the second position (either −1 or +2),

call this candidate (2). The next most likely pivot-type event involves a tie (or

a near tie) between (2) and its main contender. Therefore, the voter should

vote for (2) if and only if she prefers (2) to its main contender. Remember that

the vote for or against (2)’s main contender ( or +1) has already been

decided by the pairwise comparison between candidates  and +1. Indeed
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the event “Candidate (2)’s main contender is caught in a tie for election with

candidate (2)" is much less likely than a tie for election between  and +1.

What is the next most likely pivot-type event, involving at least one candi-

date other than candidates (2),  and +1? Denoting by (), for 2 ≤  ≤
−1 the candidate with the ’s position in the ordering defined in the previous
paragraph, one may check that the next most likely pivot-type event, involving

at least one candidate other than candidates (2),  and +1 is a tie (or a

near tie) between (3) and its main contender. Therefore, the voter should vote

for (3) if and only if she prefers (3) to its main contender.

The same reasoning can be generalized by considering all the candidates in

turn. Thus the strategic recommendation described in Proposition 3.

Q.E.D.

Remark 12 In Section 6, we tackle the rule called “ -restricted Approval”,

whereby a voter can only approve up to  candidates. Note that the proof

above also characterizes the best responses in that case. Indeed, in that case, the

voter considers all the candidates in turn, according to the priority order defined

in the proof. Note that the assumption that for any pair of candidates ( 0),
|b−()− b−(0)| ≥ 3 in Proposition 11 guarantees that there is no ambiguity
when defining this priority order. As long as she does not hit the vote-budget

constraint (  votes), the voter votes for a candidate if and only if her utility

for this candidate is larger than her utility for its main contender.

A.4 Proof of Proposition 4

Consider a profile of strategies (ballots) from voters other than voter  : − =
() 6=  Let b− denote the vector of expected scores obtained by the candidates
from the votes of all the voters except voter . Let the candidates be labelled in

such a way that:

b−(1)  b−(2)    b−( )  b−(+1)    b−()
• For  = 1 (one person to be elected), the best response described in

Proposition 3 prescribes (i) to identify the critical candidates (1 and 2),

(ii) to approve 1 if and only if (1)  (2), (iii) for  ≥ 2, to approve 
if and only if ()  (1). This recommendation prescribes voting for

all candidates strictly preferred to 1 if (1)  (2), and voting for all

candidates weakly preferred to 1 if (1)  (2). This always produces

a sincere ballot, whatever the voter’s preferences over the candidates. This

property for  = 1 was already noticed in Laslier (2009).

• For  =  − 1, this rule always produces a sincere ballot. Indeed, if
( )  (+1) = (): for any candidate , she should vote for 

if and only if she strictly prefers  to  . This always produces a sincere

ballot. If ( )  (+1): the voter should vote for a candidate  if
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and only if she weakly prefers  to  . This always produces a sincere

ballot.

• Whenever  ≥ 2 and  ≥ +2, there exist preferences for voter  such

that strategic voting entails casting a non-sincere ballot. Suppose that

voter  has preferences over the candidates such that:

( )  ()  (1)  (+1)

which is possible whenever  ≥ 2 and  ≥  + 2. The voter should

approve the expected winners (1 2   ) if and only if she prefers

them to the strongest expected loser +1: given her preferences, this

implies in particular voting for 1. She should approve the expected losers

(+1 +2  ) if and only if she prefers them to the weakest expected

winner : given her preferences, this implies in particular not voting for

 . One concludes that such a voter should approve 1 but not  , al-

though she prefers  to 1. This results in a non-sincere ballot.

Q.E.D.

A.5 Proof of Proposition 10

Assume voters have single peaked preferences.

In the single-peaked case, the majority tournament is transitive. By Propo-

sition 9, there is an equilibrium where the  top candidates according to the

majority tournament are elected. (Point 1 in Proposition 10).

By Remark 6, we also know that at any equilibrium, the Condorcet winner

is elected.

Let us now show that the elected committee forms a segment in the ordered

set of candidates.

Consider an equilibrium (by Proposition 9, we know that (at least) one

equilibrium exists). Denote by  (resp. +1) the position of the weakest

winner in the ordered set of candidates (resp., the position of the strongest loser

in the ordered set of candidates). Without loss of generality, assume that in

the ordered set of candidates,   +1. Consider a candidate (assuming

there is one), whose position in the set of ordered candidates is , such that

    +1. Let us show that necessarily,  is an expected winner (with a

slight abuse of language, we will use in the sequel the same notation to denote

a candidate, and its position in the ordered set of candidates). Indeed, assume

by contradiction that  is an expected loser. By Proposition 5 Point 3, it must

by the case that

(  )  ( +1)

Since preferences are single peaked and     +1, it must be the case

that

(  )  (+1  )
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yielding a contradiction. Therefore, any candidate located between  and

 (if any) must be an expected winner.

Consider now a candidate, say , (assuming there is one) such that  

 . Let us show that necessarily,  is an expected loser. Indeed, assume by

contradiction that  is an expected winner. By Proposition 5 Point 2, it must

by the case that

( +1)  (  +1)

Since preferences are single peaked and    , it must be the case that

( +1)  (  +1)

yielding a contradiction. Therefore, any candidate located on the left-hand side

of  (if any) must be an expected loser.

Consider last a candidate, say , (assuming there is one) such that  

+1. Let us show that necessarily,  is an expected loser. Indeed, assume by

contradiction that  is an expected winner. By Proposition 5 Point 2, it must

by the case that

( +1)  (  +1)

By Proposition 5 Point 3, we know that

(  +1)  2

therefore, it must by the case that the following two inequalities simultaneously

hold:

( +1)  2

(  +1)  2

with   +1  , yielding a contradiction with the fact that preferences

are single-peaked. Therefore, any candidate located on the right-hand side of

+1 (if any) must be an expected loser.

These remarks show that the set of expected winners forms a segment (in

the set of ordered candidates). This concludes the proof of Point 2

To conclude the proof, since the Condorcet winner belongs to the set of the

expected winners, and the set of winners is a segment,at most  distinct sets

of winners can be supported at equilibrium.

Q.E.D.

Comment on Proposition 10: An example with single-peaked pref-

erences where distinct sets of winners can be elected at equilibrium.

Proposition 10 states that if voters have single-peaked preferences, there are at

most  distinct set of elected candidates which can be supported at equilib-

rium. We provide below a simple example showing that this maximum number

can be reached.

Assume that there is a continuum of voters, with bliss points uniformly

distributed on the interval [−1+1].
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A voter with bliss point ∗ evaluates a candidate at position  with the

utility function ( ∗) = − |− ∗|.
Assume  candidates are to be elected among  = 2 candidates. Can-

didates are located as follows:

−1 =   −1    2  1  −05;
+

04 = 1  2    −1    +05

The  top candidates according to the majority tournament are 1, 2, ...,

 (ranked in that order from the Condorcet winner, 1, to the 
th candidate

in the tournament,  ). The remaining candidates are 1, 2, ...,  , ranked in

that order from the ( + 1)
th
candidate in the tournament, 1, to the Condorcet

loser,  .

Necessary and sufficient condition for the set of winners to be the set

{− −−1   2 1 2 −1 } 

with  as the weakest winner and −+1 as the strongest loser are (see Propo-
sition 5):

Condition 1: ( −+1)  12

Condition 2a: (  −+1)  ( −+1) for    −  + 1

Condition 2b: (  −+1)  ( −+1) for    (if  ≥ 2)
Condition 3a: (  )  (−+1 ) for    −  + 1

Condition 3b: (  )  (−+1 ) for   

It is straightforward to check that Conditions 1, 2a, 2b, 3a are clearly satis-

fied. Condition 3b is satisfied if and only if:

(+1 )  (−+1 )

Note that:

(−+1 )  (  1) = 35%

and

(+1 )  (2 1)  30%

Therefore (+1 )  (−+1 ), and Condition 3b is satisfied.
This simple example shows that for any  = 1 2  , the set of candidates

{− −−1   2 1 1 2 −1 } can be elected at equilibrium. This
proves that there can be  distinct sets of winners at equilibrium, including

one where the set of elected candidates is {−1 −2   1 1}. In this

equilibrium, note that among the  elected candidates, only the Condorcet

winner belongs to the set of the  top candidates according to the majority

tournament.
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